XYZP spectroscopy at a charm photoproduction factory

Alessandro Pilloni

Snowmass, RF Townhall meeting, October 2nd, 2020

Exotic landscape

XYZP spectroscopy at a charm photoproduction factory

 D^*D_1

 $D_sD_s^*$

 $D^*D^{\tilde{s}}$

 D_sD_s

DD

¹ Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
² Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
³ INFN Sezione di Genova, Genova, I-16146, Italy

⁴ Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL, 1015 Lausanne, Switzerland
 ⁵ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
 ⁶ Departamento de Física Teórica, Universidad Complutense de Madrid and IPARCOS, 28040 Madrid, Spain
 ⁷ CERN, 1211 Geneva 23, Switzerland

⁸European Centre for Theoretical Studies in Nuclear Physics and related Areas (ECT*) and Fondazione Bruno Kessler, Villazzano (Trento), I-38123, Italy

⁹ Dipartimento di Fisica and INFN, Sapienza Università di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy
¹⁰ Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47403, USA
¹¹ Department of Physics, Indiana University, Bloomington, IN 47405, USA

Estimates in M. Albaladejo et al. [JPAC], 2008.01001

Lol RF7_RF0_120

Exclusive photoproduction

- XYZ have so far not been seen in photoproduction: independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Polarized photon and nucleon give further information on the exchanges

Exclusive photoproduction

- XYZ have so far not been seen in photoproduction: independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments with high luminosity in the appropriate energy range are promising

VMD is used to couple the incoming photon to a vector quarkonium V

$$<\lambda_{\mathcal{Q}}\lambda_{N}'|T|\lambda_{\gamma}\lambda_{N}> = \sum_{V\in\mathcal{E}} \frac{ef_{V}}{m_{V}} \mathcal{J}_{\lambda_{V}=\lambda_{\gamma},\lambda_{\mathcal{Q}}}^{\alpha_{1}\cdots\alpha_{j}} \mathcal{P}_{\alpha_{1}\cdots\alpha_{j};\beta_{1}\cdots\beta_{j}} \mathcal{B}_{\lambda_{N}\lambda_{N}'}^{\beta_{1}\cdots\beta_{j}}$$

Bottom vertex from standard photoproduction pheno, exponential form factors to further suppress large t

Exclusive photoproduction

- XYZ have so far not been seen in photoproduction: independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments with high luminosity in the appropriate energy range are promising

Threshold vs. high energy

- Fixed-spin exchanges expected to hold in the low energy region
- t channel grows as s^j , exceeding unitarity bound, Regge physics kicks in: Reggeized tower of particles with arbitrary spin at HE

- If $\varepsilon \neq \mathbb{P}$, $\alpha_0 < 1$, $d\sigma/dt$ decreases with energy
- Exchange of heavy particles further suppressed

Z photoproduction

- The Zs are charged charmoniumlike 1^{+-} states close to open flavor thresholds
- Focus on $Z_c(3900)^+ \to J/\psi \pi^+$, $Z_b(10610)^+$, $Z_b'(10650)^+ \to \Upsilon(nS) \pi^+$
- The pion is exchanged in the t-channel
- Sizeable cross sections especially at LE

X photoproduction

- Focus on the famous $1^{++} X(3872) \rightarrow J/\psi \rho, \omega$
- Studying also $X(6900) \rightarrow J/\psi J/\psi$ (assumed 0⁺⁺)
- ω and ρ exchanges give main contributions: need to assume the existence of a OZI-suppressed $X(6900) \rightarrow J/\psi \ \omega$
- Extremely suppressed cross sections at HE: LE most promising

An example of yield estimate

- Example with an ideal CharminGlueX detector
- $E_{
 m lab} \sim 20$ GeV, photon flux $10^8 \, \gamma/{
 m s}$
- Tipical target, 500 pb⁻¹ /yr
- Assuming efficiency 1%

	$W_{\gamma p} \; (\text{GeV})$	σ (nb)	$\mathcal{B}(\mathcal{Q} \to \ell^+ \ell^- n\pi) \left(\times 10^{-3} \right)$	Counts	Comparison
X(3872)	6	33.1	5.3	877	$\sim 90 \ [52]$
$Z_c(3900)^+$		15.9	12.5	994	$\sim 1300 \ [15]$
$Z_b(10610)^+$	15	2.8	2.6	36	$\sim 750 \ [53]$
$Z_b'(10650)^+$		0.66	2.1	7	$\sim 200 [53]$
			$\mathcal{B}(J/\psi \to \ell^+ \ell^-)^2 \ (\times 10^{-3})$		
X(6900)	12	1.9	14	133	~ 800 [32]

Conclusions

- Photoproduction is a valuable tool to study exotic states
- Complementary infomation to other mechanisms
- Facilities to study photoproduction at low energies are very welcome to pursue this program
- As for writing: some overlap with the EIC Yellow Report (see Lol RF7_RF0_090 and J. Stevens's talk), more material to be produced during the next year

Thank you!

Joint Physics Analysis Center

Exclusive reactions: 2008.01001

Inclusive reactions: in progress

Code available on https://github.com/dwinney/jpacPhoto

Contact: pillaus@jlab.org

BACKUP

Another \tilde{X} ?

COMPASS claimed the existence of a state degenerate with the X(3872), but with C=1

Large photoproduction cross section

A. Guskov

At COMPASS conditions: $\sigma_{\mu N} \approx \sigma_{\gamma N} / 300$ EIC L=10³⁴ cm⁻² s⁻¹ $e^{-}N \rightarrow e^{-}\widetilde{X}(3872)\pi^{\pm}N' \rightarrow$ $\rightarrow e^{-}J/\psi\pi^{+}\pi^{-}\pi^{\pm}N' \rightarrow e^{-}\mu^{+}\mu^{-}\pi^{+}\pi^{-}\pi^{\pm}N'$ ~10 events per day

Exclusive P_c photoproduction

At Jlab12 measurements of direct P_c production are being performed

Using VMD, BR($P_c \rightarrow J/\psi p$) ~ 1%

Polarized P_c photoproduction

- s channel resonances significant at low energies:
 u channel dominates at high energies
- Main background from N(*) trajectories
- Estimated P_c coupling upper bound of same order of magnitude as $N^{(*)}$ coupling
- Reggeization suppresses P_c due to larger mass (smaller trajectory intercept)
- We estimate that the P_c trajectories will hardly be visible at the EIC
- P_b searches still possible: s channel at higher energies!

Cao et al., Phys.Rev. D 101, 074010 (2020) E. Paryev, arXiv:2007.01172 [nucl-th] (2020)

Y (vector) photoproduction

- Focus on the $1^{--}Y(4260) \rightarrow J/\psi \pi^+\pi^-$, check with $\psi' \rightarrow J/\psi \pi^+\pi^-$
- Diffractive production, dominated by Pomeron (2-gluon) exchange
- Good candidates for EIC: diffractive production increases with energy!
- We have $\gamma\psi$ -pomeron coupling from our analyses 1606.08912, 1907.09393

How to rescale from J/ψ to ψ' ?

$$R_{\psi'} = \sqrt{\frac{g^2(\psi' \to \gamma gg)}{g^2(\psi \to \gamma gg)}} \sim 0.55 \qquad g^2(\psi \to \gamma gg) = \frac{6m_{\psi}\mathcal{B}(\psi \to \gamma gg)\Gamma_{\psi}}{PS(\psi \to \gamma gg)}$$

Y (vector) photoproduction

- Focus on the $1^{--}Y(4260) \rightarrow J/\psi \pi^+\pi^-$, check with $\psi' \rightarrow J/\psi \pi^+\pi^-$
- Diffractive production, dominated by Pomeron (2-gluon) exchange
- Good candidates for EIC: diffractive production increases with energy!
- We have $\gamma\psi$ -pomeron coupling from our analyses 1606.08912, 1907.09393

How to rescale from J/ψ to Y(4260) ?

We assume VMD and $g^2(Y \to \psi \pi \pi) = g^2(Y \to \psi gg) \times g^2(gg \to \pi \pi)$ (Novikov & Shifman)

$$R_Y = \frac{ef_{\psi}}{m_{\psi}} \sqrt{\frac{g^2(Y \to \psi \pi \pi)}{g^2(\psi \to \gamma gg)}} \frac{g^2(\psi' \to \psi gg)}{g^2(\psi' \to \psi \pi \pi)}$$

Caveat : $BR(Y \to \psi \pi \pi)$ only known times the leptonic width Γ_{ee}^{Y}

Y (vector) photoproduction

Existing data allow to put a 95% upper limit on the ratio of $\psi'/Y(4260)$ yields

Assuming previous formula, one gets:

$$\Gamma_{ee}^{Y} = 930 \, eV$$

(cfr. hep-ex/0603024, 2002.05641)

$$BR(Y \to J/\psi \pi \pi) = 0.96\%$$

$$R_Y = 0.84$$

Primakoff X photoproduction

Using measurement of $\Gamma(X \to \gamma \gamma^*)$ from Belle, one can get predictions for Primakoff

Makes use of the ion beam, enhancement of cross sections as \mathbb{Z}^2

Diffractive semi-inclusive Z_c ph.

If the target fragments are separated from the beam ones, one can invoke Regge factorization

Quark-Regge duality allows to replace the intermediate hadrons with Pomeron , prediction reliable for $x_B \sim 1$, $t \ll W_{\gamma p}^2$

Semi-inclusive *X* production

X. Yao

For large Q^2 one can invoke NRQCD factorization to describe quarkonium(-like) production

Semi-inclusive *X* production

One can assume the same NRQCD factorization for exotics, independent of their internal structure

$$\sigma[X(3872)] = \sum_{n} \hat{\sigma}[c\bar{c}_{n}] \langle \mathcal{O}_{n}^{X} \rangle,$$

$$Br[X \to J/\psi \pi^+ \pi^-] \left(\langle \mathcal{O}_8^X(^3S_1) \rangle + 0.159 \langle \mathcal{O}_8^X(^1S_0) \rangle + 0.085 \langle \mathcal{O}_1^X(^1S_0) \rangle + 0.00024 \langle \mathcal{O}_1^X(^3S_1) \rangle \right) = (2.7 \pm 0.6) \times 10^{-4} \text{ GeV}^3$$

Artoisenet and Braaten, PRD81, 114018 from Tevatron data

If one consider the first term only, it leads to

$${
m Br}[X o J/\psi\pi^+\pi^-]\sigma(X(3872),Q^2>1~{
m GeV})pprox 2.6~{
m pb}$$
 $\sqrt{s}=$ 100 GeV X. Yao